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Abstract

A new approach of utilizing information fusion technique is developed to predict the radiation embrittlement of reactor
pressure vessel steels. The Charpy transition temperature shift data contained in the Power Reactor Embrittlement Data-
base is used in this study. Six parameters-Cu, Ni, P, neutron fluence, irradiation time, and irradiation temperature – are
used in the embrittlement prediction models. The results indicate that this new embrittlement predictor achieved reductions
of about 49.5% and 52% in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling
water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The implications
of dose-rate effect and irradiation temperature effects for the development of radiation embrittlement models are also
discussed.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

The application of the information fusion tech-
nique to RPV radiation embrittlement was first
developed by the authors [1]. In this earlier work,
general electric boiling water reactor (BWR) RPV
surveillance data consisting of 112 RPV surveillance
data points from RPV base and weld materials were
used to develop embrittlement models. For this
data, the information fusion approach achieved
about 56% and 62% reductions in uncertainties for
base and weld materials, respectively, compared to
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the prediction of the Nuclear Regulatory Commis-
sion’s (NRC’s) Regulatory Guide 1.99, Rev. 2.

Currently, based on the ASTM E10.02 database
and the Oak Ridge National Laboratory (ORNL)
Power Reactor Embrittlement Database (PR-
EDB) [2,3], about 900 RPV surveillance transition
temperature shift data points are available for base
and weld materials from the US Power Reactor
Surveillance Program. Despite the demonstrated
effectiveness of the information fusion technique in
predicting RPV embrittlement in BWR data [1], its
scope is somewhat limited, since these BWR data
constitute only a relatively small portion of the
overall RPV surveillance data. Thus, further verifi-
cation of the general applicability of the informa-
tion fusion technique to determining the radiation
.
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embrittlement of RPV steels is needed. Verification
is the main focus of the present study.

2. New approach for evaluating radiation
embrittlement

2.1. Information fusion approach

The complex nonlinear dependencies observed in
typical RPV material embrittlement data, as well as
the inherent large uncertainties and scatter in the
data, make prediction of radiation embrittlement
a difficult task. Conventional statistical and deter-
ministic approaches have only resulted in rather
large uncertainties, in part because they do not fully
exploit domain-specific mechanisms. The mecha-
nism models built by researchers in the field, on
the other hand, do not fully exploit the statistical
and information content of the data. As evidenced
in previous studies, it is unlikely that a single
method, whether statistical, nonlinear, or mecha-
nism model, will outperform all others. In this
paper, we combined a number of complementary
methods including mechanism models, neural net-
works, and nearest-neighbor regressions (NNRs).
Such a combination of methods has become possi-
ble because of recent developments in measure-
ment-based optimal fusers [4–6] in the area of
information fusion. The isolation fusers [7] was
used to combine various methods, which guarantees
to be at least as good, according to a chosen crite-
rion such as prediction error, as the best individual
estimator with a specified probability. Informally,
the isolation property ensures that the fuser is at
least capable of simply ‘imitating’ any of the
models, but in general it can perform and does
much better in practice. This result is distribution-
free in that no assumptions are made on the under-
lying error distributions. More recently, projective
fusers have been developed [8]. These fusers, based
on choosing the models with minimum localized
error, offer stronger guarantees that fusion of no
proper subset of the models performs better than
the fused system based on all models. Thus, the
positive aspects of all individual estimators can be
exploited without discarding any single estimator.
The deployment of these fusers on various models
will ensure (probabilistically) that the fused model
is at least as good as the best of the individual mod-
els, irrespective of their individual performances. In
practice, however, because of the general nature of
the results on fusers, the actual performance gains
in a particular application are often better than
the analytical guarantees. Typically, the required
sample size is much smaller (but never larger)
than the predicted sample size. We show here that
significant performance improvements are indeed
obtained by employing fusers to combine various
embrittlement models.

2.2. Methodology used for developing

embrittlement models

Firstly, several improved embrittlement models,
based on PR-EDB and utilizing the copper precipi-
tation and matrix damage mechanism theory, were
developed. We then employ neural networks,
NNRs, and other mechanism models, based on
the PR-EDB data, to predict the Charpy transition
temperature shift (DT30) of RPV materials.

The first task is to create unbiased training and
test sets. The RPV surveillance data (listed in the
ASTM E10.02 database and PR-EDB) is prepro-
cessed and streamlined, and data values are then
scaled to the interval [�1,1] using a linear max/min
transformation. This ensures that no one component
in the data dominates the parameter optimization
scheme. Then the data are randomly partitioned into
training and testing sets. Three groups of the sample
data are used for model development as described
below:

• The PWR data (746 samples), including (a) 518
base data points where 468 data points were used
as training set and 50 data points were used as a
testing set, and (b) 228 weld data where 208 data
points were used as a training set and 20 data
points were used as a testing set.

• The BWR data (152 samples), including (a) 83
base data where 73 data points were used as a
training set and 10 data points were used as a
testing set, and (b) 69 weld data points where
60 data points were used as a training set and 9
data points were used as a testing set.

• The combined BWR and PWR data (899 sam-
ples), including (a) 601 base data points where
541 data points were used as a training set and
60 data points were used as testing set, and (b)
298 weld data points where 268 data points were
used as a training set and 30 data points were
used as a testing set.

The sensitivity of the sample size was not investi-
gated in the current study.
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The second task consists of determining the
number of estimators for this problem. For each
method, we selected a criteria function and an opti-
mization routine that consistently produce stable
results. For statistical estimators, we followed the
procedure described in the literature [5,8–10]. For
artificial neural networks (ANNs) [10], 1 hidden
layer and 11 hidden nodes were chosen with 2000-
epoch iteration. A random number generator was
used to generate the initial weights for ANNs. Four
sets of ANN models were tested. We then combined
the statistical and deterministic estimators using
information fusion techniques.

An optimal projective fuser [5] proposed earlier
was based on the lower envelope of error regressions
of the estimators. In most practical cases, however,
error regressions are not available, and only a finite
sample is given. Consequently, this fuser is hard to
implement; furthermore, it provides only asymp-
totic consistency. In this paper, we employ a projec-
tive fuser based on the nearest-neighbor concept [8],
which is easy to implement. The combined system is
guaranteed in a probabilistic sense to perform at
least as well as the best model even locally by
exploiting the regions where the individual models
are superior.

2.3. Embrittlement prediction models

In this section we briefly describe various models
used for embrittlement prediction. These models are
combined in the next section.

Wang–Rao–Konduri (WRK) embrittlement pre-

diction models. The residual defects in materials
due to neutron-induced displacement damage are
a function of neutron energy, neutron flux, exposure
temperature, and the material properties that deter-
mine how neutrons interact with atoms and how
defects interact within the material [11]. Thus, tem-
perature, neutron flux, neutron energy spectrum,
material composition, and processing history all
contribute to the radiation embrittlement process
[12].

The development of new embrittlement predic-
tion equations [13,14] stems from a series of studies
on radiation embrittlement models, such as Guth-
rie’s model [15], the model of Odette et al. [16],
Fisher and Buswell’s model [17], Lowe and
Pegram’s model [18], the French model [19], and
several other parameter studies on the PR-EDB.
Although the copper-precipitation model, in addi-
tion to the matrix damage model, has been extre-
mely successful in explaining many aspects of
irradiation embrittlement, it is becoming increas-
ingly evident that other elements also contribute
to the embrittlement of RPV steel, such as Ni, P,
Mn, Mo, and S. Theoretically, all the impurities in
low-alloy steel are candidates for inclusion in the
modeling. For example, C, Si, Mn, Mo, S, and other
elements were investigated in the test run, but
including or excluding these elements did not affect
the overall outcome of the statistical parameters sig-
nificantly; therefore, these parameters (or elements)
were not incorporated into final governing equa-
tions. Thus, Cu, Ni, and P were tentatively selected
as key elements and were incorporated into the for-
mula for the new prediction equations. Further-
more, the reasons for separating weld and base
metals are because the welds tend to show enhanced
degradation, the welding process presents a possible
region of physical and metallurgical discontinuity,
and welding offers added chances for the introduc-
tion of defects and undesirable components or
stresses.

A nonlinear least-squares fitting FORTRAN
program was written for this study. The governing
equation of the new model is based on the copper
precipitation and matrix damage models. The deve-
lopment of the parameters for this new embrittle-
ment model is based on statistical formulation
chosen by computer iterations. Three new predic-
tion models each for PWR data and the combined
PWR and BWR data were developed, where the
‘dose rate’ and ‘dose rate plus irradiation tempera-
ture’ effects are considered in the development of
Model II and Model III, respectively, as described
below.

WRK models for PWR data
Model I (baseline model without irradiation time

and temperature)

DRTNDTðBaseÞ
¼ ð38:863� 211:865P=Niþ 1042:37P

þ 241:084ðCu� 0:07Þ
þ 223:972

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 25:988NiÞf 0:32�0:023 ln f

ð1Þ
DRTNDTðWeldÞ
¼ ð4:53þ 162:776P=Ni� 70:151P� 86:971ðCu� 0:07Þ
þ 488:082

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 31:765NiÞf 0:255�0:041 ln f

ð2Þ

Model II (model with irradiation time, without irra-
diation temperature)
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DRTNDTðBaseÞ

¼ ð6:988� 118:69P=Niþ 511:906ðCu� 0:07Þ

þ 105:766
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 550:289PÞf 0:017�0:169 ln f

þ ð35:764ðCu� 0:07Þ � 34:422
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 6:142Þ

� f ð�2:256� 0:013 ln f lnðti=600000ÞÞ ð3Þ
DRTNDTðWeldÞ

¼ ð13:58þ 74:623P=Ni� 132:155ðCu� 0:07Þ

þ 516:216
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 610:399PÞf 0:188�0:084 ln f

þ ð5:167ðCu� 0:07ÞNiþ 0:721Þ

� f ð�2:256� 0:013 ln f lnðti=600000ÞÞ ð4Þ

Model III (model with irradiation time and
temperature)

DRTNDTðBaseÞ

¼ ð230:939ðCu� 0:07Þ þ 347:024
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 770:618PÞ

� ðf 0:188�0:089 ln f ÞTANH 1= 31:039ðT i=1010Þ � 16:04ð Þ½ �

þ ð�4:387
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 15:154NiðCu� 0:07Þ þ 6:475Þ

� f ð2:086� 0:069 ln f lnðti=600000ÞÞ ð5Þ
DRTNDTðWeldÞ

¼ ð153:96P=Ni� 186:36ðCu� 0:07Þ

þ 668:707
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 364:926PÞðf 0:233�0:057 ln f ÞTANH

� ½1= 22:935ðT i=1010Þ � 11:71ð Þ� þ ð�35:659
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 35:2ðCu� 0:07Þ þ 7:69NiÞ

� f ð4:286þ 1:177 ln f lnðti=600000ÞÞ ð6Þ
In these models DRTNDT is the transition temper-
ature shift in �F; temperature Ti is in �F; neutron
fluence f is in units of 1019 n/cm2 (E > 1 MeV); effec-
tive full power time ti, is in hours; and Cu, Ni, and P
are in wt%.

WRK Models for Combined PWR and BWR
Data.

Model I (Baseline Model w/o irradiation time
and temperature)

DRTNDTðBaseÞ

¼ ð33:246� 174:946P=Niþ 1356:022Pþ 227:318ðCu� 0:07Þ

þ 223:099
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 23:069NiÞf 0:296�0:008 ln f ð7Þ

DRTNDTðWeldÞ

¼ ð8:898þ 169:487P=Ni� 319:076P� 74:685ðCu� 0:07Þ

þ 483:148
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 31:045NiÞf 0:224�0:023 ln f ð8Þ
Model II

DRTNDTðBaseÞ
¼ ð7:305� 105:775P=Niþ 564:059ðCu� 0:07Þ
þ 105:672

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 913:291PÞf 0:172�0:038 ln f

þ ð72:105ðCu� 0:07Þ � 31:628
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 5:198Þ

� f ð�2:048� 0:004 ln f lnðti=600000ÞÞ ð9Þ
DRTNDTðWeldÞ
¼ ð25:286þ 79:23P=Ni� 116:417ðCu� 0:07Þ
þ 513:085

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 348:227PÞf 0:195�0:037 ln f

þ ð1:344ðCu� 0:07ÞNiþ 0:944Þ
� f ð�4:57� 2:002 ln f lnðti=600000ÞÞ ð10Þ

Model III

DRTNDTðBaseÞ
¼ ð202:542ðCu� 0:07Þ þ 388:389

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 1113:706PÞ

� ðf 0:289�0:021 ln f ÞTANH 1= 16:989ðT i=1010Þ � 16:121ð Þ½ �
þ ð�26:457

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 5:209NiðCu� 0:07Þ þ 5:614Þ

� f ð2:11� 0:073 ln f lnðti=600000ÞÞ ð11Þ
DRTNDTðWeldÞ
¼ ð165:874P=Ni� 147:611ðCu� 0:07Þ þ 663:656

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
� 342:643PÞðf 0:215�0:04 ln f ÞTANH 1= 11:549ðT i=1010Þ � 10:69ð Þ½ �
þ ð�33:156

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu� 0:07ÞNi

p
þ 31:972ðCu� 0:07Þ þ 7:802NiÞ

� f ð4:631þ 1:334 ln f lnðti=600000ÞÞ ð12Þ

WRK Models for BWR Data
Two new prediction models for the GE BWR

data were also developed. Irradiation time and irra-
diation temperature were considered in Model II.
Only the irradiation time was considered in Model
I, as described below.

Model I:

DRTNDTðBaseÞ
¼ ð9:987þ 267:018Cu� 1:857

ffiffiffiffiffiffiffiffiffiffiffiffi
CuNi
p

� 133:674P=CuÞ
� f �0:381�0:124 ln f þ ð7:382� 21:645

ffiffiffiffiffiffiffiffiffiffiffiffi
CuNi
p

� 1:562Cu

� 37:011P=CuÞf ð�26:703� 2:19 ln f � lnðti=600000ÞÞ
ð13Þ

DRTNDTðWeldÞ
¼ 0:565ð440:195Cuþ 261:083

ffiffiffiffiffiffiffiffiffiffiffiffi
CuNi
p

� 13:387P=CuÞ
� f �0:434�0:212 ln f þ 0:476ð5:231Niþ 9:78CuÞ
� f ð16:623� 1:449 ln f lnðti=600000ÞÞ ð14Þ

Model II:

DRTNDTðBaseÞ
¼ ð80:702Cuþ 2:719Ni� 32:476P=CuÞ
� ðf�0:004155�0:068 ln f Þðe

103:588
T i�473:576Þ

þ ð�11:218þ 7:827Niþ 32:149Cuþ 60:406P=CuÞ
� f ð14:315þ 1:2 ln f lnðti=600000ÞÞ ð15Þ

DRTNDTðWeldÞ
¼ ð627:252Cu� 23:165P=CuÞðf 0:259�0:055 ln f Þ
� ðe

2:542
T i�525:237Þ þ 2:832ð6:142Ni� 17:183CuÞ

� f ð5:859þ 1:449 ln f lnðti=600000ÞÞ ð16Þ



Table 2
Weights of linear fuser used for WRK Fuser Model I

Data type Material Model

ANN1 ANN2 ANN3 ANN4 WRK1 WRK2 Eason K-NNR

BWR Base 0.093 0.194 �3.210 2.801 0.465 0.286 �0.231 0.592
Weld �0.046 0.181 0.018 0.253 �0.045 0.381 0.051 0.603

PWR Base �0.07 0.089 0.043 0.001 �0.301 0.614 �0.149 0.846
Weld 0.037 0.012 �0.049 �0.051 �0.193 0.507 0.088 0.682

BWR + PWR Base 0.058 �0.055 0.032 �0.012 �0.244 0.460 �0.116 0.922
Weld �1.658 �0.928 0.736 1.798 �0.170 0.438 0.079 0.685

Table 1
Two-sigma uncertainty bound of residual for WRK Fuser Model I and the RG1.99/R2’s model

Data type Residual uncertainty �C (�F) Reduction in uncertainty from
Fuser Model I (%)RG 1.99/R2 Model WRK Fuser Model I

Base Weld Base Weld Base Weld

BWR 27.5(49.6) 33.0(59.4) 13.0(23.4) 18.8(33.9) 52.8 33.9
PWR 26.7(48.2) 33.8(60.8) 19.1(34.4) 22.3(40.2) 28.6 33.9
BWR + PWR 27.0(48.6) 34.9(62.8) 18.2(32.7) 22.7(40.9) 32.7 34.9

120 J.A. Wang et al. / Journal of Nuclear Materials 362 (2007) 116–127
Regulatory Guide 1.99, Rev. 2 (RG1.99/R2)

model. The transition temperature shift of the
RG1.99/R2 model [20] was also used in this study
for comparison. It is described as

DRTNDT ¼ ðCFÞf ð0:28�0:10 log f Þ; ð17Þ

where DRTNDT is the transition temperature shift in
�F; CF(�F) is the chemistry factor (given in Tables 1
and 2 of RG1.99/R2), which is a function of Cu and
Ni content; and neutron fluence f is in units of
1019 n/cm2 (E > 1 MeV).

Eason’s models. The embrittlement model devel-
oped by Eason et al. (Eason’s model) [21] was used
in this study. Development of Eason’s trend curve
of transition temperature shift was based on power
reactor data and is described in Eq. (18).

DT 30p ¼ ff1ð/tÞ þ ff2ð/tÞ � f ðccÞ; ½�F�

ff1ð/tÞ ¼ A � exp
1:906� 104

T c þ 460

� �
� ð1þ 57:7PÞ � /t

1019

� �a

ff2ð/tÞ ¼ 1

2
þ 1

2
tanh

logð/t þ 5:48� 1012tiÞ � 18:29

0:600

� �

ff ðccÞ ¼ BðCu� 0:072Þ0:682ð1þ 2:56Ni1:358Þ;
ð18Þ

where a = 0.4449 + 0.0597 * log(/t/1019), /t = fast
neutron fluence (E > 1 MeV); for Welds: A =
1.10 · 10�7, B = 209; for Plates: A = 1.24 · 10 � 7,
B = 172; for Forgings: A = 0.90 · 10 � 7, B = 135;
and Tc is coolant inlet temperature, �F.

ANN models. An ANN implements a parameter-
ized nonlinear mapping from an input space to an
output space [10]. A multilayer ANN (ML-ANN)
is the most common architecture. The information
from each input-layer node is fanned out to nodes
in the hidden layer between the input and output
layers. The information entering a node in any hid-
den or output layer is the weighted sum of all
outputs in the previous layer. The node performs
a nonlinear/sigmoidal transformation on the
weighted sum it receives and fans out the result to
all nodes in the next layer (except the output nodes).
The weights are free parameters that must be
adjusted according to a chosen criteria function
using a learning algorithm. In this way, ANNs are
able to capture many higher-order correlations that
may exist in the data, which typically results in a
nonlinear map.

The back-propagation algorithm is used to train
the network with the data [10]. The training process
determines the weights of ANNs to fit a suitable
nonlinear map. The back-propagation’s effectiveness
in training an ANN often results in better modeling
than does linear regression, but this method has sev-
eral weaknesses. The back-propagation algorithm is
based on local descent and can get stuck in different
local minima based on the starting weights; as a
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result, the predictive properties of resultant ANNs
can be quite varied. Also, there are a number of tun-
able parameters such as starting weights and learn-
ing rates that have a significant effect on the final
weights computed by the back-propagation algo-
rithm. Thus, when different ANN models are trained
with the same back-propagation algorithm but with
different starting weights and learning rates, the per-
formance can be significantly different. But since
each such neural network achieves local minimum,
it performs the best for that locality; and the projec-
tive fusers ensure that such local optimality is
preserved [8]. Six independent variables-Cu, Ni, P,
fluence, irradiation temperature, and effective full-
power time-were used in the ANN models.

K-nearest-neighbor regression (K-NNR) method.

The NNR [9] is also chosen to generate an embrit-
tlement model because it is non-smooth and hence
is qualitatively dissimilar to smooth ANNs. Typi-
cally, disparate models result in better fuser perfor-
mance. The algorithm is described follows. Let x1,
x2,x3, . . . ,xn be a sequence of n independent mea-
surements with known classifications, and x be the
measurement to be classified. Among x1,x2,x3,
. . . ,xn, let the measurement with the smallest dis-
tance from x be denoted as x 0. Then the nearest-
neighbor decision rule assigns the classification of
x 0 to that of x. As for K-NNR, it assigns to an
unclassified sample point the class most heavily rep-
resented among its K-nearest-neighbors to x. In this
study, we chose the first three nearest-neighbors
with properly weighted functions to represent the
unclassified sample.

Six independent variables-Cu, Ni, P, fluence,
irradiation temperature, and effective full-power
time-were used in the K-NNR models. For the
BWR data sample, a second test K-NNR model,
excluding irradiation temperature from the fitting
parameter, generated a trend curve nearly identical
to that with irradiation temperature.

2.4. Fusion of embrittlement models

Our approach consists of identifying the error
profiles of various estimators and the physical
parameters of the underlying problem and designing
the fusers for combining the individual estimators.
Two types of information fusers were used here:
the linear fuser and the nearest-neighbor projective
fuser.

Initially we combined the statistical and domain-
mechanism estimators using the linear fuser, which
is a special case of the isolation fusers [7]. Given n

estimators, f1(x), . . . , fn(x), the linear fuser is given
by f(x) = w1f1(x) + � � � + wnfn(x), where w1, . . .,wn

are the weights. We computed the weights for the
fuser by minimizing the error of the fuser for the
training set. The program was written in C, where
the solution is based on a quadratic programming
problem.

The projective fuser [8] based on the nearest-
neighbor concept was also implemented in the
study. This fuser partitions the space of domain X
into multiple regions based on the nearest-neighbor
to the sample. For each region an estimator with the
lowest empirical error is used to compute the func-
tion estimate for all points in the region. This fuser
is easy to implement and provides finite-sample per-
formance bounds under fairly general smoothness
or non-smoothness conditions on the individual
estimator.

In this study, we utilized the linear fuser and the
nearest-neighbor projective fuser to develop the
embrittlement models. Six parameters-Cu, Ni, P,
fast fluence, irradiation time, and irradiation tem-
perature-were incorporated into model develop-
ment. Eight different models were investigated,
including four neural network models, two WRK
models (excluding the baseline model), the K-
NNR method, and the Eason model.

WRK Fuser Model I. Linear fuser was imple-
mented into Fuser Model I development. The
results of the linear fuser model indicate that this
newly developed embrittlement model achieves sig-
nificant reductions in uncertainties (as shown in
Table 1), compared with the model of RG1.99/R2.
The residual is defined as ‘measured shift minus pre-
dicted shift’. The residuals and its two-sigma uncer-
tainties for the combined PWR and BWR data are
illustrated in Figs. 1 and 2 for base and weld mate-
rials, respectively. The weights of WRK Fuser
Model I are listed in Table 2, and the associated
one standard deviation for training set and test set
data are stated in Table 3.

WRK Fuser Model II. The nearest-neighbor pro-
jective fuser was implemented in Fuser Model II
development. The results of the projective fuser
model indicate that significant reductions in uncer-
tainties were achieved, as shown in Table 4,
compared with the results of RG1.99/R2. The
residual and its two-sigma uncertainties for
the combined PWR and BWR data are illustrated
in Figs. 3 and 4 for base and weld materials,
respectively.
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data, with 2-sigma uncertainty of 22.7 �C.
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A few modifications were made to make the
K-NNR fuser and the nearest-neighbor projective
Table 3
One standard deviation of residuals for WRK Fuser Model I

Data type One standard deviation of residuals �C (�F)

Base

Training set/point Testing set/po

BWR 11.6(6.4)/73 12.0(6.7)/10
PWR 16.1(8.9)/468 24.3(13.5)/50
BWR + PWR 15.1(8.4)/541 25.0(13.9)/60

Table 4
Two-sigma uncertainty bound of residual for WRK Fuser Model II an

Data type Residual uncertainty �C (�F)

RG 1.99/R2 Model WRK Fus

Base Weld Base

BWR 27.5(49.6) 33.0(59.4) 9.3(16.8)
PWR 26.7(48.2) 33.8(60.8) 13.9(25.1)
BWR + PWR 27.0(48.6) 34.9(62.8) 13.7(24.6)
fuser more robust. Neutron fluence is measured in
units of 1019 n/cm2, which leads to a small squared
error, and this results in less contribution from flu-
ence data in fuser model development. Hence, there
is a need to scale this variable in such a way that it
makes a contribution that is equal or comparable to
that of the other variables in the model formulation.
The fluence was multiplied by 10 times to increase
its contribution to be on a par with that of copper
and of nickel. The code was edited accordingly,
and the results were derived.

A few more alterations to the extent of fluence
contribution were investigated. This was done for
the weld data and the nearest-neighbor projective
fuser model. The fluence was weighted with a factor
5, 3, or 1 instead of 10, which is in accordance with
engineering judgment. The prediction of the higher
fluence points seem to perform better with the lower
weight factor. The contribution of higher fluence
points to fuser model development is significant,
even without the factor 10. Hence, the range of
the high fluence and low fluence is very critical to
model development similar to the case of copper
content.

Also, the nearest-neighbor projective fuser test
data relies entirely on one value of the least sum
of squared error. To make the model more stable
and capture all the points nearest to the test data,
the algorithm was modified to include the nearest
three neighbors to the test data. This methodology
can be more stable when the data set is large and
covers the entire range of variable values.
Weld

int Training set/point Testing set/point

15.6(8.7)/60 23.1(12.8)/9
20.0(11.1)/208 20.4(11.3)/20
20.0(11.1)/268 24.4(13.6)/30

d the RG1.99/R2’s model

Reduction in uncertainty from
Fuser Model II (%)er Model I

Weld Base Weld

11.8(21.2) 66.1 64.3
14.3(25.7) 47.9 58.3
16.7(30.1) 49.4 52.1
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3. Discussion

A comparison of the performance of the embrit-
tlement models, based on the two-sigma uncertainty
of residual values, is shown in Tables 5–7. The
Fuser Model II gave the best performance among
all the embrittlement prediction models for three
sample spaces: the BWR, PWR, and combined
Table 5
Two-sigma uncertainty of the embrittlement models for PWR data

Embrittlement model Variables considered

Cu Ni P Ut

R.G. Guide 1.99/R2 X X X
WRK Fuser Model I X X X X
WRK Fuser Model II X X X X
WRK Model I X X X X
WRK Model II X X X X
WRK Model III X X X X
Eason’s Model X X X X
K-NNR Model X X X X
ANN-4 Model X X X X

a jResidualsj > 100 �F are not included in two-sigma uncertainty eval
BWR and PWR data. Based on the residual for
PWR or combined PWR and BWR data, the
WRK Model II is marginally better than Model I,
while Model III shows a relative large improvement
over Model II. However, the earlier study for BWR
data [1], indicates that the embrittlement model with
an irradiation-time parameter does generate a much
smaller 2-sigma uncertainty compared to uncer-
tainty without the irradiation-time parameter in
the embrittlement model. Furthermore, because of
the marginal improvement in the uncertainty
achieved from WRK Model II as compared to
WRK Model I for BWR data, the embrittlement
model for the BWR data is less dependent on the
irradiation temperature. Fusion modeling based on
BWR data provides the best performance. This
superior prediction may be partially due to the small
subset of power reactor data used in model develop-
ment. However, by the same token, this study may
also demonstrate the superiority and advantage of
using subset data-for example, vendor-specific
data-to develop power reactor embrittlement
models. In general a large data set with similar char-
acteristics or controllable parameters will generate a
better trend prediction than its subsets. But a mis-
leading trend curve can result from a large data
set built upon different bases and with uncontrolla-
ble parameters as revealed by its large uncertainty.

The WRK models indicate that PWR data are
less sensitive to the neutron flux or dose-rate effects
than are BWR data. In order to investigate this
issue and the associated neutron flux population
and its impact on RPV embrittlement modeling,
we generated a flux distribution plot, as shown in
Fig. 5.

The flux distribution plot indicates that the BWR
data has very wide range of flux values, ranging
Two sigma of residuals �C (�F)

ti Tc Base (518 points) Weld (228 points)

26.8(48.2) 33.8(60.8)
X X 19.1(34.4) 22.3(40.2)
X X 13.9(25.1) 14.3(25.7)

25.4(45.8) 30.5(54.9)
X 24.1(43.4) 30.4(54.7)
X X 22.5(40.5) 27.3(49.2)
X X 24.4(44.0) 29.1(52.3)
X X 20.2(36.3) 26.6(47.9)
X X 46.1(83.0)a 55.3(99.6)a

uation.



Table 7
Two-sigma uncertainty of the embrittlement models for BWR data

Embrittlement model Variables considered Two sigma of residuals �C (�F)

Cu Ni P Ut ti Tc Base (83 points) Weld (69 points)

R.G. Guide 1.99/R2 X X X 27.6(49.6) 33.0(59.4)
WRK Fuser Model I X X X X X X 13.0(23.4) 18.8(33.9)
WRK Fuser Model II X X X X X X 9.3(16.8) 11.8(21.2)
WRK Model I X X X X X 14.5(26.1) 24.1(43.4)
WRK Model II X X X X X X 14.2(25.5) 23.2(41.7)
Eason’s Model X X X X X X 20.7(37.2) 30.8(55.5)
K-NNR Model X X X X X X 16.4(29.6) 22.3(40.2)
ANN-4 Model X X X X X X 33.2(59.7)a 53.4(96.1)a

a jResidualj > 100 �F are not included in two-sigma uncertainty evaluation.

Table 6
Two-sigma uncertainty of the embrittlement models for combined BWR and PWR data

Embrittlement model Variables considered Two sigma of residuals �C (�F)

Cu Ni P Ut ti Tc Base (601 points) Weld (298 points)

R.G. Guide 1.99/R2 X X X 27.0(48.6) 34.9(62.8)
WRK Fuser Model I X X X X X X 18.2(32.7) 22.7(40.9)
WRK Fuser Model II X X X X X X 13.7(24.6) 16.7(30.1)
WRK Model I X X X X 25.2(45.3) 31.1(55.9)
WRK Model II X X X X X 24.1(43.4) 30.9(55.6)
WRK Model III X X X X X X 22.4(40.3) 28.2(50.8)
Eason’s Model X X X X X X 24.0(43.2) 30.6(55.1)
K-NNR Model X X X X X X 18.8(33.9) 26.2(47.2)
ANN-4 Model X X X X X X 46.3(83.3)a 55.1(99.1)a

a jResidualsj > 100 �F are not included in two-sigma uncertainty evaluation.
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from 2 · 1012 to 2 · 1016 n/m2s. Conversely, the
PWR data has a relatively narrow band of flux,
ranging from 8 · 1013 to 4 · 1015 n/m2s. Thus, for
a flux less than 8 · 1013 n/m2s, the BWR data will
be the dominated factor since there is no PWR data
available. By the same token, the PWR data will be
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Fig. 5. Neutron flux distribution curves for PWR and BWR
surveillance data, where BWR data show much wider neutron
flux spectrum compared to that of PWR data.
the dominant factor for a flux between 8 · 1013 to
4 · 1015 n/m2s. Furthermore, due to narrow band
of flux distribution for the PWR data, it will be
difficult to observe the dose-rate dependence of the
PWR data as compared to that of BWR data.

In comparing the flux effect or the rate effect, we
should not neglect the neutron energy spectrum
effect. Past studies have demonstrated that a higher
thermal to fast neutron ratio may have an effect on
the radiation embrittlement [22–25]. For example,
the BWR has a relatively soft neutron spectrum
compared to that of the PWR, with the possible
consequence that their respective ratios of radiation
damage to fast fluence will not scale similarly. This
implies that it may not be proper to combine irradi-
ation data from different sources for modeling if
their neutron spectra are not sufficiently similar. In
reality, it is difficult to separate the flux and spec-
trum effects. However, by properly grouping the
data with similar energy spectra, we may isolate
the bias from a spectrum effect and gain confidence
in modeling the flux effect independently. Further-
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more, the benefit of separating BWR and PWR data
in embrittlement modeling was clearly demon-
strated from this study.

For PWR or combined PWR and BWR data, the
residuals listed in Tables 5 and 6 indicate that
RG1.99/R2 provides good predictions of RPV
embrittlement and is compatible with WRK Model
I, WRK Model II, and Eason’s model. RG1.99/R2
was formulated on the basis of Guthrie’s and
Odette’s models, and no temperature effect was con-
sidered in the embrittlement model development.
The fluence factor (FF) and the plates’ chemistry
factor (CF) are from Guthrie’s model [20].
Although total of 177 surveillance data points were
used in Guthrie’s model development, only 6 data
points are from a BWR environment. Thus, BWR
surveillance data may not be properly characterized
by the RG1.99/R2 model. Furthermore, according
to the PR-EDB database, the mean temperature
and one standard deviation of BWR and PWR data
are 279.4 ± 5.7 �C (534.9 ± 10.2 �F) and 285.6 ±
5.6 �C (546.1 ± 10.15 �F), respectively. Thus, in
terms of irradiation temperatures, a bias of
6.25 �C (11.25 �F) exists between the sample tem-
perature environments of PWRs and BWRs. There
were four major commercial power reactor vendors
in the United States: Westinghouse, General Elec-
tric, Babcock & Wilcox (B&W), and Combustion
Engineering. Each vendor has its unique designs
and specific operating procedures. There are sig-
nificant problems associated with insufficient in-
formation such as the irradiation temperatures of
surveillance specimens and the thermal gradients
within surveillance capsules, and insufficient data
about particular regions of interest to characterize
the vendor’s service environments. About 61% of
PR-EDB data is from Westinghouse. Thus, the
trend curve based on all four vendors’ data will clo-
sely resemble the Westinghouse reactor environ-
ment. Furthermore, B&W surveillance data appear
to show higher irradiation temperatures (based on
capsule melt wire data) than data from the other
vendors. Combining low- and high-temperature
data may further obscure the actual bias in both
data sets. For example, from the trend curve of all
vendor data, the high-irradiation-temperature data
shows a negative bias (i.e., a prediction model shows
over-prediction), and low-irradiation temperature
data show a positive bias. However, the overall
biases (or uncertainties) will cancel each other,
resulting in misleading statistical measures such as
mean values and uncertainty.
Eason’s model covers both PWR and BWR envi-
ronments, in this case 96 BWR data points were
included in model development, and coolant inlet
temperatures were incorporated into governing
equations to account for temperature effects. In
practice, the coolant inlet temperature is incorpo-
rated into the embrittlement model to simulate the
irradiation temperature for a pressurized light-water
reactor. However, a past study [12] showed that a
large bias can still be identified in Eason’s model
for surveillance data from a higher-irradiation-tem-
perature environment and that the bias is similar to
that of RG1.99/R2 [20]. This may indicate that the
coolant inlet temperature is not a proper index to
project the irradiation temperature experienced by
the surveillance specimens. Furthermore, based on
this study for BWR data on WRK Model I and
II, neither including nor excluding coolant inlet tem-
perature has a significant impact on the trend curve,
a finding that may further support the above state-
ment. However, for PWR data or combined PWR
and BWR data, the WRK Model III shows rela-
tively large improvement compared to WRK Model
II, which may indicate that PWR data are more sen-
sitive to the irradiation temperature parameter than
BWR data, due to different ranges of irradiation
temperatures.

For surveillance data, significant deviations of
the measured shift from the trend curve (i.e., more
or less than 18.9 �C (34 �F) for plate materials based
on two sigma of RG1.99/R2 prediction for base
metals) should be considered a warning flag point-
ing to a possible anomalous capsule environment.
The large uncertainties are the result of errors in
the overall description of the environment. But, lim-
ited attention has been given to characterizing the
irradiation temperature environment of the surveil-
lance specimens. In general, the neutron environ-
ment-fluence and flux-can be determined fairly
accurately; and possible effects from these sources
are relatively small in a power reactor environment.
However, the temperature of surveillance capsule
environments still relies heavily on the measurement
of the melt wires. Nevertheless, the melt wire data
provide important information to support the
vendor-dependent embrittlement rate, which is
illustrated in the transition temperature shift plot
for B&W and Westinghouse data shown in Fig. 6.
In general the melt wire data of B&W surveillance
capsules reveal a peak temperature range between
316 �C (600 �F) and 321 �C (610 �F), and the Wes-
tinghouse data shows temperatures around 304 �C
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(579 �F). In order to minimize the chemical variabil-
ity from different heats, we used the standard refer-
ence material HSST02 in the study. Fig. 6 clearly
indicates that B&W’s data appear to be a lower
bound; the B&W trend curve also shows a much
lower embrittlement rate than that of Westinghouse
data.

The melt wires are commonly used as a passive
thermal monitor for capsules designed for RPV sur-
veillance programs. These provide a peak tempera-
ture indication for the surveillance specimens.
However, in many BWR surveillance capsules no
thermal monitor was provided, and normally in
the BWR surveillance reports only the reactor
design operating temperature specified as 288 �C
(550 �F), is provided. Therefore, a more detailed
analytical investigation of specimen temperature is
needed, based on detailed neutronic and thermo-
mechanical analysis for specific capsule and speci-
men-loading configurations, to improve confidence
in trend curve development. In the absence of this
confirmation, the most likely reason for deviations
from the trend curve is the specimen temperature.
4. Conclusions

We used the information fusion technique to
obtain embrittlement predictions for the RPVs of
US power reactors by combining mechanism
models with neural networks and NNRs. For
PWR data, our method resulted in 47.9% and
58.3% reductions in two-sigma uncertainties com-
pared with the RG1.99/R2 model for base and weld
materials, respectively. For BWR data, our method
resulted in 66.1% and 64.3% reductions in two-
sigma uncertainties compared with the RG1.99/R2
model for base and weld materials, respectively.
This new approach combines conventional nonlin-
ear estimators and mechanism-specific models into
an integrated methodology applicable for modeling
the processes of material aging. Such an approach
could assist the nuclear industry with the issues of
safety and lifetime extension for aging commercial
nuclear power plants. By using a wide spectrum of
methods, the proposed system could handle the sub-
tle nonlinearities and imperfections in the database
and serve as a benchmark for calibrating the exist-
ing mechanistic models. The predictions generated
by our system have the potential for providing effi-
cient, reliable, and fast results, and can be an essen-
tial part of the overall safety assessment of aging
RPV materials.
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